
SecuredDW: A Homomorphic Schema to Securely

Hosting Data Warehouse in the Cloud

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Sfax University, Miracl Laboratory, Tunisia

Abstract. Currently, cloud computing has become the most popular technologies

in the area of IT enterprise. It has many advantages such as computing power,

storage, network and software as a service. Moreover, many other benefits have

made it attractive. In fact, it is easy to deploy, its technical infrastructure is

adaptable to the volume of business activity and its cost is relative to

consumption. Whereas building a data warehouse typically necessitates an

important initial investment, with the cloud pay-as-you-go paradigm, BI system

can benefit from this new technology. However, cloud computing brings its own

risks in terms of security. For this purpose, before outsourcing sensitive data to

the cloud, the owner must encrypt his data to keep secure. In the particular context

of cloud data warehouse, privacy is of critical importance because it contains

sensitive data. Cloud provider proposes traditional security solutions to ensure

the confidentiality of outsourced data. Unfortunately, those solutions are not

practical in the case of data warehouse anymore because they induce a heavy

overhead in terms of data storage and query performance. So, a new solution

must be proposed for outsourcing data warehouse to the cloud that respects its

specification and swings performance and security. In this paper, we propose

(SecuredDW) a new sharing schema for securing and querying a data warehouse

hosted in the cloud based in a homomorphic algorithm. The integrity of data is

also addressed in this paper by proposing two new signatures to verify the

correctness of data sent and received from the cloud. Theoretical results show the

efficiency of Secured DW in terms of privacy and performance with respect to

other solutions.

Keywords: cloud computing, data warehouse, Security, integrity.

1 Introduction

With the booming of cloud computing, people are encouraged to adapt BI system in

their companies. Such new delivery model can mitigate the cost of deployment of a

data warehouse thanks to its “pay as you go” paradigm. So, company pays just the used

resource. It is true that the most attractive advantage of using the cloud is its profitable

cost, but also there are many more. Indeed, it is easy to deploy and its technical

infrastructure is adaptable to the volume of business activity. The only drawback that

prevents the move to the cloud is security. In fact, there are several security issues

related to cloud computing. Some of those issues emanated from the traditional

99

ISSN 1870-4069

Research in Computing Science 148(4), 2019pp. 99–118; rec. 2019-04-11; acc. 2019-05-27

architecture such as network attack, confidentiality of data, availability, authentication

and vulnerability exploitation. Because cloud computing evolves rapidly and the push

to effective controls to protect data in the cloud is nascent, many security solutions for

clouds are presented in the literature. The most used solution is the encryption of data

before sending it to the cloud with the symmetric and the asymmetric algorithms.

Homomorphic encryption is also used to secure data hosted in the cloud.

In the context of data warehouse, these security problems become tougher to resolve

because the high volume of data stocked in the warehouse and because the nature of

OLAP query. More precisely, encrypting data warehouse can affect the cost of using

the cloud especially in the case of homomorphic encryption that produces a very high

volume overhead. Furthermore, symmetric and asymmetric algorithm cannot be a

suitable solution for data warehouse because the decryption of data in the cloud can

affect the performance of OLAP query and the cost of using the cloud. More than that,

such scenario is based on the trust between the owner and the cloud provider, which is

not the case.

For this reason, in this paper, we propose SecuredDW as a new sharing schema

adapted to the nature of data warehouse. Our proposal is based on the homomorphic

privacy presented in [1]. One serious deficiency of this homomorphic privacy is the

possibility of being broken by clear text attacks. Thus, our contribution is to make this

privacy homomorphism more robust and secure by using data splitting, multi-cloud and

perturbation value.

In addition to that, in this work, we enforce data integrity by providing two

signatures to verify the correctness of data.

Moreover, when data is encrypted the original order of data is broken. Thus, all

fetched data must be decrypted and querying at the owner by the trust tier before to be

sent to the client. This operation can affect the performance of range query and some

others query when ordering is necessary. For that we will propose a weighted method

that reduces the time complexity of such kind of query.

According to my knowledge, this work is one of a few work that provide an

environment that takes into account the specifications of a data warehouse while

balancing performance and security. It should be noted that it is not our aim to propose

a solution as secure as the state-of-the-art encryption algorithms. We rather suggest a

technique that provides a considerable level of overall security strength with respect to

some performance overheads.

The rest of this article is organized as follows. The second section introduces and

discusses the previous research related to our proposal. Then, we present SecuredDW

as a new homomorphic schema to securely host data warehouse in the cloud. In the

fourth part, we deal with the theoretical and performing results. Finally, the paper ends

with a conclusion.

2 Related Works

As encryption is the most used solution to secure data outsourcing to the cloud, we will

start by introducing some traditional encryption algorithms that are used in the context

100

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

of the cloud. In fact, symmetric encryption is mainly the use of the same key in

encryption and decryption. That is to say that he who encrypts the data must share the

key with the receiver who decrypts the data. The two most important modern symmetric

algorithms are the data encryption standard DES [2] and the advanced encryption

standard AES [3]. In opposite to symmetric encryption, asymmetric encryption is by

definition the use of two different keys for encryption and decryption. RSA [4], Rabin

[5] and ElGamel [6] are the most practical asymmetric algorithms. However, the main

threat of using those algorithms is that they are based on trust between the owner and

the cloud provider, which is not the case because the cloud provider may not be

trustworthy and can fetch into the sensitive data. Although the data and the keys are

stocked in the same cloud provider, this scenario can make data subject to external

attacks. So, if intruders break the security system of the provider, they can steal the data

with the keys and decrypt it easily. The inefficiency of those security techniques is not

only in terms of privacy but also in terms of performance. Indeed, decrypting data

before processing query is not practical mostly in the case of data warehouse.

To overcome those problems, many works in literature propose running data in

ciphertext in the cloud. In this context, homomorphic encryption is presented. Authors

in [7,8,9,10,11,12] propose a solution based on a fully homomorphic encryption. The

advantage of those algorithms is that they allow addition and multiplication of

encrypted data in ciphertext. However, they suffer from high time complexity and high

volume overhead.

To perform computations over attributes that are used in the calculation of max and

min aggregation functions or attributes that are compared using relational operators,

order preserving encryption [13,14] and multivalued Order preserving encryption MV-

OPE [15] are proposed.

To apply the power of running data in ciphertext in the cloud, authors in [16] propose

to encrypt data warehouse with several encryption techniques depending on the type of

attributes. This way, analytical queries can be processed in ciphertext. Yet, this solution

suffers from high time complexity of running query and high volume overhead.

The availability of data is also a challenge when entered in the cloud. For this reason,

the cloud provider replicates data to ensure its availability. Another solution presented

consists in using erasing codes. The advantage of such solution is that it can reduce the

volume of replicated data. Facebook, for example, is using this algorithm to ensure the

availability of its data warehouse with minimum volume overhead [17].

Multi clouds, cloud of cloud, or inter cloud, are by definition the use of many cloud

providers for data storage such as DSky [18], inercloud [19], and NCloud [20]. Authors

in [21] use erasure coding to divide the data and stock it in different cloud providers to

ensure its availability and to reduce the volume of data. Their approach seems to be good in

term of availability and in term of reduction of data volume, but it is not secure.

Authors in [22] present CHARM a multi cloud schema that guarantees the

availability of data with minimum cost.

The secret sharing algorithm, when first presented in [23], is very useful in the cloud

to ensure confidentiality and availability as in works [24,25,26,27]. The problem with

using the secret sharing is the high volume overhead generated after encryption. That’s

why, authors in [28] try to solve this problem by proposing a new model for sharing

101

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

data warehouse inspired from secret sharing. The idea is to split the data into block

before encrypting it with a random linear equation. However, this approach suffers from

high time complexity of decryption steps. Another problem arises when using this

approach is that it cannot resist to collusion attacks.

To work out such a problem, authors in [29] propose S4 as a new schema based on

secret sharing for enforcing privacy in Cloud data warehouse. The idea is to store

secrets at one single CSP instead of sharing secrets to n CSP’s. The privacy in S4 relies

on the fact that k-1 splits are stocked in the CSP and the Kth splits necessary for

reconstructing the secret are stocked in the owner. This way, they can avoid the problem

of collusion, but the processing of the query cannot be done totally in the cloud.

Authors in [30] propose HORNS as a sharing schema based on the Residue Number

System (RNS) and multi-cloud. The idea in HORNS is to divide the data in small

chunks with the RNS and stock those chunks in a multi-cloud. In this concern, time

complexity of encryption and decryption steps is reduced. But this scheme suffers from

redundant data and collusion attacks.

2.1 Discussion

As presented in the last section, many works try to solve the problem of security when

using the cloud. Nowadays, the most appropriate solution is to use symmetric and

asymmetric encryption algorithm to encrypt data before sending it to the cloud. Those

solutions are based on the trust between the user and the provider. For this reason, they

are not secure enough because the provider can fetch into sensitive data. That’s why,

processing data in ciphertext is improved and new solutions based on homomorphic

encryption algorithm, secret sharing, Information Dispersal Algorithm IDA are

proposed in the case of database in general and in the case of data warehouses in

particular. The problem with those solutions is that they are not practical enough,

mainly in the case of data warehouse because it stocked a high volume of data and

because of the time complexity of an OLAP query. For example, many homomorphic

encryption algorithms are proposed in the literature as described in the previous section.

But those algorithms are not a good solution for outsourcing data in the cloud because

of the high time complexity of processing data and because of the volume overhead

generated after encryption data. So, the famous homomorphic encryption algorithms

existing in the literature cannot meet the need for a heavy computing application like

the data warehouse. Some authors propose to use the secret sharing for outsourcing data

to the cloud. Their choice is based on secret sharing since it has an acceptable time

complexity comparing with the homomorphic encryption algorithm. But the problem

with adopting this technique in data warehouse is that it generates a high volume

overhead. Accordingly, authors in [25] propose a new secret sharing that reduces the

volume overhead generated when encrypting data. But this solution suffers from the

high time complexity when decrypting data. Information dispersal algorithm (IDA) is

also proposed as a solution to outsource data in the cloud. It is known for its low time

complexity of encrypt and decrypt data and its low volume overhead. However, this

algorithm suffers from its weak security. Therefore, in this paper, we propose a new

schema that balances security and performance when outsourcing data warehouse in

102

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

the cloud. Our schema is based on the simple privacy homomorphism as described in

[1]. The privacy homomorphism will be illustrated as in [1]:

Let p and q be two large secret primes and m= pq the product of such large secret

primes. For that m is difficult to factor.

Consider the set of cleartext data T= Zm, and the set of cleartext operation F= {+m ,-m

,⨯m } consisting respectively of the addition, substraction and multiplication module

m , with m=pq .

Let the ciphertext data set be T’ =ZP⨯Zq. Ciphertext operation F’ is the component wise

of these in F.

Define the encryption function ɸ(x) = [x mod p, x mod q]. Given the two prime numbers

p and q and the ciphertext xp =x mod p and the ciphertext xq=x mod q, the secret x is

decrypted using the Chinese Remainder Theorem (CRT).

We are motivated to use this privacy homomorphism because the latter is based on

the modular arithmetic as it is described in the encryption function ɸ(x). This is very

interesting with regards to volume overhead. In fact, because the data will be divided

in a small residue number, the storage space will be reduced. But when it comes to

confidentiality, the data will be encrypted with the two prime numbers p and q and will

be computed in the range of m = pq. The decryption function of this schema is based

on the use of Chinese remainder theorem. This technique is very practical and feasible

because of its reasonable temporal complexity. Thanks to the homomorphic

characteristic of encryption function, arithmetic operations can be done in a ciphertext.

So, the simple scenario is to encrypt data stocked in the data warehouse with the

encryption function ɸ(x) = [x mod p, x mod q]. After that, the cipher text dataxp= x

mod p and the cipher text dataxq = x mod q will be sent to the cloud provider with the

module m. The two prime numbers p and q will be kept secret in the owner. The data

stocked in the cloud will be processed modulo m. So, in this way, the cloud provider

cannot decrypt the data with the modulo m because it is hard to factor. Then, the data

will be securely stocked in the cloud. Furthermore, with the homomorphic

characteristic of modular arithmetic query using arithmetic operation such that {+ ,-, x}

will be done in the cloud in a cipher text without decryption. After processing the query

in the cloud, the provider sends the result to the owner in a ciphertext. The owner

decrypts his data with the two secret prime numbers p and q and the two chunks of

encrypted data are received from the cloud using Chinese remainder theorem (CRT).

Unfortunately, this schema can be broken by the cloud provider because it has the

two chunks of data and the secret module m. It can infer the two chunks of data and get

the two secret parameters p and q. Malicious intruders can also break the security

parameters of the cloud provider, get the encrypted data and the modulo m from the

cloud provider and decrypt it using the known cleartext attack as described in [18].

There are two factors that threaten the confidentiality of this schema, an internal

factor being the cloud provider itself and an external factor being a malicious intruder.

Thus, a new way will be suggested in the second section which can reduce the risk of

breaking the security parameters of our schema using a multi-cloud and perturbed data.

103

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

3 SecuredDW: A New Schema for Securing and Querying Data

Warehouse Hosted in the Cloud

This section presents SecuredDW as a new homomorphic schema for hosting and

querying data warehouse in the cloud securely. In this schema, we focus on ensuring

the three levels of security CIA (confidentiality, integrity and availability) as it is

described in figure 1.

3.1 Enforcing the Confidentiality of Data

Authors in [28] describe the way how a cryptanalyst can infer the data and get the secret.

They argue that this homomorphic privacy presented in [1] can be broken by a known

plaintext attack. They illustrate the process of breaking the system as follows:

Suppose x is the integer that will be encrypted and presented by a pair (xp ,xq), where

xp =x mod p and xq = x mod q. Assume that the cryptanalyst has the plaintext, ciphertext

pair for some data. They suppose that p’ be the gcd{xp – x for all data} . In the same

way, they suppose that q’ be the gcd{xq – x for all data}. After that, it tests that p=p’

and q= q’and if this is the case, the cryptanalyst can decrypt all ciphertext. They prove

that when ciphertext (xp ,xq) is specifically given, the cryptanalyst can find x’ such as,

x’≡ xp mod p’ and x’≡ xq mod q’ .

Fig. 1. Global Architecture of SecuredDW.

104

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

So, it is clear that if the two chunks of data (xp ,xq) or one of them is kept secret from

the cryptanalyst, the probability of inferring the data and breaking the system with the

known plaintext attack will be reduced.

Therefore, as a first modification, we propose to split the secret data into a k small

chunk with a random function F(x) like this:

 F(x) = ∑ xi
k
i=1 with xi∈ Zm. (1)

After splitting the original data with the random function F(x), we encrypt each

chunk of data with the homomorphic function ɸ(x) :

 ɸ(x) =[x mod p , x mod q].

Splitting data and encrypting each chunk of data separately with the homomorphic

function ɸ(x) is not enough to secure sensitive data. To achieve this, we propose to

stock each share of secret data in a different cloud provider. In this way, we can reduce

the probability of inferring data and breaking the encryption function because each

provider has only one chunk of the secret data. So, the problem of intern risk will be

decreased. Likewise, it is difficult for malicious users to break the security parameter

of two cloud providers at the same time and get the chunks of secret data necessary to

reconstruct the original data. Hence, the risk of breaking the system by an external

intruder will be diminished. This way, our model will be more secure in terms of

confidentiality towards the cloud providers as well as from external attack.

Besides, when p, q, m = pq are very large integers, a small value x is very likely to

have the same representation over Zm, Zp, and Zq , that is x mod m = x mod p = x mod q

if x< min (p, q). This is an undesirable feature because the homomorphic function ɸ(x)

leaves the cleartext unencrypted (trivial ciphertext). To overcome this drawback, we

propose to multiply secret data with two secret values rp and rq such that rp< p andrq<q.

So our new homomorphic encryption function will be:

ɸ(x) = ([𝑥1⨯ rp mod p, 𝑥1⨯ rq mod q],

 [𝑥2⨯ rp mod p, 𝑥2⨯ rq mod q] , with k ≥ 2

………

 [𝑥𝑘⨯ rp mod p, 𝑥𝑘⨯ rq mod q]).

(2)

After encrypting data with the homomorphic function ɸ(x), k pair of data will be

produced (xkp, xkq) with xkp= xk⨯ rp mod p and xkq = xk⨯ rq mod q. After that, the chunks

of data (x1p,x2p,…xkp) will be sent in the CSPp and (x1q,x2q,…xkq) will be sent in the CSPq.

3.2 New Homomorphic Integrity Function

To ensure the integrity of data, we introduce in this paper new signatures named outer

signature to verify the integrity of share and inner signature to verify the integrity of

original data.

105

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

Outer signature

Outer signature is a new homomorphic function based on the modular approach.

For c = x mod n is equivalent to x-k= n*c, k is the rest of division.

So the signature of each share designed “ Sgn_x“ will be computed with the

homomorphic function as:

Hs(x) =x mod n= Sgn_x, (3)

and we will compute the key of each signature as:

key_x = x - (Sgn_x⨯ n). (4)

In our case, to verify the integrity of our chunks of data, we will use the two

equations (3) and (4). After that, each pair of data will be sent to a CSP.

In the cloud, each provider will verify the correctness of its share by computing:

Sgn_x = share mod n,

and it verifies that the key received is:

key_x= share – (Sgn_x⨯ n).

Similarly, when the owner receives data from the CSP’s, he can verify his data with

the two equations (3) and (4).

The main advantage of our integrity function is in its homomorphic characteristic.

This is very useful in the case of data warehouse when using the aggregation function.

Inner signature

To enhance the integrity of our schema we propose an Inner signature. The latter is a

self-checked signature based on the homomorphic propriety of modular approach. It

works by computing the equivalence between the chunks of data generated after

splitting the original data with the random function F(x) and the share of data received

from the cloud. Algorithm 1 is used to verify the integrity of the original data in the

owner after decrypting the share of data x1p, x1q, x2p, x2q,... xkp ,xkqwith the CRT and

getting the original chunk of data x1, x2,… xk.

Algorithm 1

Inner signature (𝑥1 ,𝑥2 , 𝑥𝑘 ,𝑥1𝑝, 𝑥2𝑝 ,𝑥𝑘𝑝 ,𝑥1𝑞 ,𝑥2𝑞 ,𝑥𝑘𝑞)

{

𝑆𝑝=|𝑥1𝑝 + 𝑥2𝑝 +...+ 𝑥𝑘𝑝|𝑝

𝑆𝑞=|𝑥1𝑞 + 𝑥2𝑞 +...+ 𝑥𝑘𝑞|𝑞

𝐶ℎ𝑢𝑛𝑘𝑝=|𝑥1 + 𝑥2 +...+ 𝑥𝑘|𝑝

𝐶ℎ𝑢𝑛𝑘𝑞=|𝑥1 + 𝑥2 +...+ 𝑥𝑘|𝑞

106

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

If ((𝑆𝑝=𝐶ℎ𝑢𝑛𝑘𝑝) and (𝑆𝑞=𝐶ℎ𝑢𝑛𝑘𝑞))

 Than

 Write (“Data is correct “)

 Else

 Write (“Data is not correct “)

}

After computing the inner signature, whether it is correct that the trust tier

reconstitutes the original data X with the function F(x), or else it asks the cloud provider

to get other share of data.

3.3 Data Availability

In this section, we want to show the robustness of our solution if we use data replication

as solution to ensure the availability of data. In this concern, we propose to replicate

each chunk of data three times. So, nine chunks of data will be produced if k =3 is the

number of data splitting. After that, the chunks of data (x1p,x2p,…xkp) will be sent to the

CSPp , (x1q,x2q,…xkq) will be sent in the CSPq and the other replicated chunks will be

sent to the two other clouds . This way, we can guarantee the availability of data if one

or two cloud providers are not available. Moreover, we can eliminate the dependency

of a single cloud provider.

With our method, data overhead cannot exceed the volume of original data ware-

house twice. So, if we replicate the entire data warehouse three times, the volume

overhead generated will be six times the volume of the original data warehouse. This

is not very practical in the case of data warehouse, but it does not exceed the volume

overhead generated with the other solutions.

4 Sharing Data Warehouse

In this section we will demonstrate how data warehouse will be shared in the cloud with

our schema. Our new sharing model is based on two initial steps. The first step is a data

sharing process, and the second step is a data reconstruction process. We will also

delineate how the query will be processed and finally we will present a new method to

process the range query in ciphertext.

4.1 Data Sharing Process

The data sharing process describes how original data will be processed before being

sent to the clouds. It consists of the following steps:
- The trust tier person who is responsible for data security in the company proposes

two secret prime numbers p and q and two secret values rp and rq, such that rp< p and
rq< q . He also calculates the module m= pq.

- He chooses the parameter k which is the number of chunks of data generated after
splitting the original data.

107

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

- He affects each prime number p and q to a specific cloud provider. This is very
important for maintaining the coherence of secret data.

- He splits the original data with the random function F(x) presented in equation (1).

- After that, he encrypts the data with the homomorphic function ɸ(x) presented in
equation (2).

- The trust tier computes the signature of each chunk of data generated after
encryption with the new homomorphic integrity function Hs presented in equation (3)
and the keys of each signature with equation (4).

- Finally, the trust tier replicates all the chunk of data with its signature and its key
and sends them to the corresponding cloud provider.

The scenario of data sharing process is presented in figure 2:

Fig. 2. Data sharing process.

4.2 Data Reconstruction Process

The data reconstruction process describes how original data will be reconstituted after

being received from the clouds. It consists of the following steps:

-The trust tier asks two cloud providers CSPp and CSPq to get the shares of
corresponding data X (x1p, Sgn_x1p, key_x1p) ,(x2p , Sgn_x2p , key_x2p) and(xkp, Sgn_xkp,

108

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

key_xkp) from CSPP, (x1q , Sgn_x1q, key_x1q) , (x2q , Sgn_x2q , key_x2q) and (xkq, Sgn_xkq,
key_xkq) from CSPq.

- He verifies the correctness of each share with the signature and the key. In case of
errors, the trust tier can ask CSP to get a new share.

-He computes the scalar product of each share (x1p , x1q) , (x2p , x2q) and (xkp, xkq) by (r

p
-1 mod p, r q-1 mod q) to retrieve (x1 mod p, x1 mod q), (x2 mod p, x2 mod q) and (xk mod

p, xk mod q) .

-After that, the trust tier decrypts the data using the Chinese remainder theorem with the
two secrets parameters p and q and with the shares of data (x1 mod p, x1 mod q), (x2

mod p, x2 mod q) and (xk mod p, xkmod q) .

- He verifies the integrity of the original data with the inner signature.

-If the inner signature is correct, the trust tier computes the original data with the function
𝐹−1(x). Otherwise, he asks the cloud provider to get another share of data.

The scenario of data reconstruction process is presented in figure 3:

Fig. 3. Data reconstruction process.

To illustrate our schema, we present the example of data sharing and reconstruction

process of the integer x= 17,

 k = 3,

F(17) = 5+ 8 + 4 ,

P= 5, q= 7, rp =3, rq=2, m=35 , n = 2,

ɸ (5) = (5⨯ 3 mod 5, 5⨯ 2 mod 7),

109

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

ɸ (8) = (8 ⨯ 3 mod 5, 8 ⨯ 2 mod 7),

ɸ (4) = (4 ⨯ 3 mod 5, 4 ⨯ 2 mod 7),

ɸ (5) = (0, 3), ɸ (8) = (4, 2), ɸ (4) = (2, 1),

Compute the signature of each chunk of data as:

sign_𝑥1𝑝 = Hs(0) ,sign_𝑥1𝑞 = Hs(3) ,sign_𝑥2𝑝 = Hs(4),sign_𝑥2𝑞 = Hs(2) ,sign_𝑥3𝑝 =

Hs(2) and sign_𝑥3𝑞 = Hs(1)

sign_𝑥1𝑝 = Hs(0) = 0 mod 2 = 0 and the key is key_𝑥1𝑝 = 0- (2* 0) = 0 ,

sign_𝑥1𝑞 = Hs(3) = 3 mod 2 = 1 and the key is key_𝑥1𝑞 = 3 - (2* 1) = 1 ,

sign_𝑥2𝑝 = Hs(4) = 4 mod 2 =2 and the key is key_𝑥2𝑝 = 4 - (2* 2) = 0 ,

sign_𝑥2𝑞 = Hs(2) = 2 mod 2 =1 and the key is key_𝑥2𝑞 = 2- (2* 0) = 0 ,

sign_𝑥3𝑝 = Hs(2) = 2 mod 2 =1 and the key is key_𝑥3𝑝 = 2- (2* 1) = 0 ,

sign_𝑥3𝑞 = Hs(1) = 1 mod 2 = 0 and the key is key_𝑥3𝑞 = 1- (2* 0) = 1 ,

After that all data will be sent to the cloud provider.

CSPp is identified with the secret parameter p and CSPq is identified with the secret

parameter q.

For reconstruction the integer x =17,

The trust tier gets all data from the CSP’s and verifies the correctness of data:

He verifies that

sign_𝑥1𝑝= 0mod2 = 0 and thatkey_𝑥1𝑝 = 0 – (0⨯2) = 0

sign_𝑥1𝑞= 3 mod 2 = 1 and that key_𝑥1𝑝 = 3 – (1⨯2) = 1

sign_𝑥2𝑝= 4 mod 2 = 2 and that key_𝑥1𝑝 = 4 – (2⨯2) = 0

sign_𝑥2𝑞=2 mod 2 = 1 and that key_𝑥2𝑞 = 2 – (1⨯2) = 0

sign_𝑥3𝑝=2 mod 2 = 1 and that key_𝑥3𝑝 = 2 – (1⨯2) = 0

sign_𝑥3𝑞=1mod 2 = 0 and that key_𝑥3𝑞 = 1 – (0⨯2) = 1

If it is the case, he computes:

Pp =7 , Pq= 5 ,bp=3 ,bq=3,𝑥1𝑝 = 0, 𝑥1𝑞 = 3 ,𝑥2𝑝 = 4,𝑥2𝑞 = 2 ,𝑥3𝑝 = 2 ,𝑥3𝑞 = 1 ,

m=35

rp
-1 mod p = 3-1 mod 5 = 2,

rq
-1 mod q = 2-1 mod 7 = 4 ,

After that we compute: (0⨯ 2 mod 5, 3⨯4 mod 7) = (0, 5) ,(4⨯ 2 mod 5, 2⨯4 mod
7) = (3, 1) ,(2⨯ 2 mod 5, 1⨯4 mod 7) = (4, 4).

Using the CRT we can compute:

𝑥1= CRT (0 , 5) = (0⨯7⨯3 + 5⨯5⨯3) mod 35 = 5

𝑥2= CRT(3 , 1) = (3 ⨯7⨯3 + 1⨯5⨯3) mod 35 = 8

𝑥3= CRT (4 , 4) = (4⨯7⨯3 + 4⨯5⨯3) mod 35 = 4

to verify the correctness of each chunk of data, we compute:

110

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

𝑆𝑝=|0 + 3 + 4|5 =2

𝑆𝑞=|5+ 1 + 4|7 =3

𝐶ℎ𝑢𝑛𝑘𝑝=|5 +8 +4|5 =2

𝐶ℎ𝑢𝑛𝑘𝑞=|5 + 4 + 8 |7 =3

𝑆𝑝=𝐶ℎ𝑢𝑛𝑘𝑝 and 𝑆𝑞=𝐶ℎ𝑢𝑛𝑘𝑞, so the chunks of data is correct.

After that, we compute the original data X = 5 + 4+ 8 = 17.

4.3 Sharing Data Warehouse

The whole table of a shared data warehouse is stored in a relational database at a given

CSP’s (two initial CSP’s in our case) and each attribute value in each record is

encrypted independently as described in the data sharing process except the primary

keys and the foreign keys. Figure 4 gives an example of star schema data warehouse

that is shared among two CSP’s. Each shared model of data warehouse stands for the

same schema as the original data warehouse, except that two other attributes are added

to store signatures and keys.

Fig. 4. Sharing schema of data warehouse in each CSP.

111

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

4.4 Querying Data Warehouse Hosted in the Cloud

Our schema can directly support some basic OLAP operations at the CSP’s through

SQL operations and aggregation function. For example, simple select-from queries can

be directly applied in the cloud. However, when expressing a condition in a where or

having clause, the trust tier must rewrite the query and post processing some operation

in the company because the MOD operator is non- injective. Given that for X MOD Y

= Z, the same output Z, considering Y a constant, can have an undetermined number of

possibilities in X as an input which will generate the same value Z when applying the

operator. Figure 5 describes the scenario of processing a select query.

Fig. 5. Scenario of processing Select query.

This routine works for many comparison operators (=, ≠, EXISTS, IN, LIKE…) and

their conjunction. Arithmetic operation and aggregation function such as sum, avg,

count can be computed in ciphertext by the trust tier after eliminating the error rows.

4.5 Weighted Method for Answering Range Query

When ordering is necessary, as in ORDER BY clauses and many comparison operators

(>, <, ≥, ≤, BETWEEN…), it can no longer be applied since the original order is broken

when sharing data. Thus, all fetched data must be decrypted and quered at the owner

by the trust tier before being sent to the client. This operation is very expensive in terms

of time computation. To infer the performance of such kind of query, we propose a

weighted method that reduces the time complexity of running range query.

We will also propose two weights, the first one is to encrypt data with modulo p,

while the second one is to encrypt data with modulo q, so:

112

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

Wp =
| 𝑃−1|𝑝

𝑝
,

(5)

Wq =
| 𝑄−1|𝑞

𝑞
,

(6)

with P =
𝑚

𝑝
 and Q =

𝑚

𝑞
 .

After that, for comparing two integer A ((𝑎1𝑝, 𝑎1𝑞) , (𝑎2𝑝, 𝑎2𝑞) , (𝑎𝑘𝑝, 𝑎𝑘𝑞))

and B ((𝑏1𝑝, 𝑏1𝑞) , (𝑏2𝑝, 𝑏2𝑞) , (𝑏𝑘𝑝, 𝑏𝑘𝑞)) encrypted with the homomorphic

function we will compute :

𝑅𝑒𝑠𝑙𝑡𝐴 = |𝑎1𝑝 ⨯ 𝑊𝑝 ⨯
1

𝑟𝑝
 + 𝑎1𝑞 ⨯ 𝑊𝑞 ⨯

1

𝑟𝑞
 + 𝑎2𝑝 ⨯ 𝑊𝑝 ⨯

1

𝑟𝑝
 + 𝑎2𝑞 ⨯

 𝑊𝑞 ⨯
1

𝑟𝑞
 + 𝑎𝑘𝑝 ⨯ 𝑊𝑝 ⨯

1

𝑟𝑝
 + 𝑎𝑘𝑞 ⨯ 𝑊𝑞 ⨯

1

𝑟𝑞
|1, (7)

𝑅𝑒𝑠𝑙𝑡𝐵 = |𝑏1𝑝 ⨯ 𝑊𝑝 ⨯
1

𝑟𝑝
 + 𝑏1𝑞 ⨯ 𝑊𝑞 ⨯

1

𝑟𝑞
 + 𝑏2𝑝 ⨯ 𝑊𝑝 ⨯

1

𝑟𝑝
 + 𝑏2𝑞 ⨯

 𝑊𝑞 ⨯
1

𝑟𝑞
 + 𝑏𝑘𝑝 ⨯ 𝑊𝑝 ⨯

1

𝑟𝑝
 + 𝑏𝑘𝑞 ⨯ 𝑊𝑞 ⨯

1

𝑟𝑞
|1. (8)

After that, if ResltA>ResltB so A > B, else A < B. Consequently, using this method,

there will be no need for decrypting all data when querying range query and the

operation of comparison will be done in ciphertext in the company.

However, some range queries can be transformed and performed in the cloud if the

comparison range is known. For example, the query “Select C_current_add From

Customer where C_birth_day between 17 and 19” would be transformed to “Select

C_current_add From Customer where C_birth_day in (0 , 4, 2) or in (3 , 0, 1) or

in(3 , 0, 2) ” at 𝐶𝑆𝑃p=5, where(0 , 4, 2) , (3 , 0, 1) ,(3 , 0, 2) are the shares of 17,

18 and 19 at 𝐶𝑆𝑃p=5, respectively for 𝐶𝑆𝑃q=7.

5 Security Analysis and Performance Evaluation

This section is devoted to illustrate the relevance of our approach along two axes. The

first axis is about the security features of our scheme, while the second axis is about the

performance of our schema in terms of time complexity and volume overhead when

using the pay-as-you go paradigm.

5.1 Security Analysis

In this section we will deal with the security analysis of our schema in terms of

confidentiality and integrity. We will also show the efficiency of our proposal to

overcome the problem of collusion.

Confidentiality of data

To protect data from plaintext attacks and from malicious cloud providers, we propose

to split data into k chunks with the random function F(x) and encrypt each chunk with

113

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

the homomorphic function ɸ(x) presented in equation 2. Then, all encrypted chunks

will be stocked in two cloud providers.

The objective is to keep minimal information about data and parameters among the

cloud provider. As a result, we can reduce the risk of inferring the data and breaking

the system.

The role of trust tier as a middle tier between the user and the cloud is an effective

solution which guarantees the confidentiality of the two secrets p and q.

Proof:

If the cloud provider predicts the p and the q or gets the p and the q (worst case), he can

predict x as:

X= y⨯p + xp and X= y⨯q + xq such that x<m.

We can conclude that even if the two secret parameters are discovered by the cloud

provider, he cannot identify whether the chunks of data correspond to the parameters p

or q or not. This ambiguity can disrupt the work of inferring the data. Furthermore,

since factoring is hard, inferring the k chunks of data without known whether the

chunks of data correspond to the parameters p or q cannot be done in the case of a huge

volume of data as in the data warehouse.

In the worst case, if the cloud provider infers the data, decrypts the entire share and

gets original chunk, the security of our original data cannot be breached because the

cloud provider has just a chunk of data and not all the original data. So, we can deduce

that splitting data is essential to the security of our schema. That’s why the parameter

k will be chosen carefully and should be k ≥ 2.

Similarly, it can be argued that the confidentiality of our schema is better with this

new sharing strategy. In fact, even if the malicious intruder gets the two secret

parameters p and q, it is hard to break the security of the two cloud providers and get

the chunks of secrets at the same time. Even if he does this and decrypts the k chunks

of data, he cannot reconstruct the original data because he does not know the random

function F(x).

Integrity of data

Outer signature

In our schema, the processing of data is done in ciphertext. Thus, there is no need to

use a complex integrity function to ensure the security of data. Our goal is to propose a

simple method which allows the verifying of the data sent and received from the cloud

with minimum time complexity.

Our integrity function Hs (x) is homomorphic. This is very practical in the case of

data warehouse. There is no need to verify each chunk of data separately if we calculate

the aggregations functions.

114

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

Inner signature

The inner signature is a self-checked signature. It is based on the homomorphic

characteristic of arithmetic modular. So, if there are some mistakes that cannot be

detected with the outer signature, the inner signature can detect it.

Collusion

With this schema the risk of collusion is small because data is split randomly with the

random function F(x). Consequently, it is hard for the two clouds providers to predict

how data is split if it colludes.

5.2 Performance Evaluation

Volume overhead

Our encryption function is based on the MOD operator which divides the data in a small

residue number. So, there is no overhead volume when encrypting initial data. The

original data is split into k chunks and each chunk will be encrypted with the Mod

operator two times. The volume of the encrypted data cannot exceed twice the volume

of the original data.

Temporal complexity

In our scheme for the encryption phase, we need just O(n) operation because the

encryption function needs only modular operation.

 The decryption function is based on the CRT. So we just need O (lglg n) operation for

the decryption phase.

Comparing our schema with the existing related approaches

In this section, we compare our schema with the approaches presented in our state of

the art in terms of security and performance. Table 1 synthesizes the features of some

approaches discussed above.

As it is described in table 1 the main advantage of our schema is that ensure three

levels of security confidentiality, integrity and availability. More than that, it resists to

collision attack.

Also, compared to other solutions our schema is very performing in term of time

complexity of encryption and decryption phase. This makes it very suitable in the case

of data warehouse. To all those benefits, are ensured with a reasonable volume

overhead and a capacity of answering query processing totally or partially in the cloud.

115

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

Table 1. Synthesis of the characteristics of some approaches discussed.

 [24] [31] [28] [27] Our schema

Confidentiality yes yes yes yes yes

Integrity

Outer signature No No No yes yes

Inner signature No No No yes yes

Availability yes No No yes yes

Collusion yes No No yes No

OLAP query yes yes No yes yes

Range query No yes No No yes

Aggregation function yes yes No yes yes

Data volume 6n - 6n 3n 6n (three

replicas)

Time complexity of encryption

phase

O(n) - O(n) O(n) O(n)

Time complexity of decryption

phase

O(nlg2

n)

- O(nlg2n) O(nt2) O(lglg n)

6 Conclusion

This paper presents SecuredDW as a system for securely hosting and querying data

warehouse in the cloud. SecuredDW uses a homomorphic encryption algorithm to

ensure the confidentiality of data. This homomorphic encryption algorithm reveals a

serious weakness as it can be deciphered by ciphertext attacks. To overcome this

weakness, we propose a new sharing method of using this homomorphic privacy based

on splitting data, multi cloud providers and perturbation values.

With this new sharing schema, we can reduce the risk of breaking the security of the

system by both cloud providers and malicious intruders. Two new signatures are

116

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

suggested to ensure the integrity of data sent and received from the cloud inner

signature and outer signature.

The weakness of our schema lies in the processing of range queries in the owner

after decrypting all the data. This operation can take a lot of time in the case of data

warehouse because of the huge volume of data that will be decrypted before processing

range query. That’s why, we propose a weighted solution to this situation in order to

reduce time consumption in the decryption phase. Our schema SecuredDW can be a

promising solution for hosting data warehouse in the cloud that balances security and

performance.

We eventually endeavour to evaluate our schema in a real cloud provider.

References

1. Rivest, R.L., Dlemam, L.A., Dertouzos, M.L.: On data bank and privacy homomorphisms.

Foundations of secure computation. Academia Press, pp 169–177 (1978)

2. National Bureau of Standards: Data Encryption Standard. U.S. Department of Commerce,

FIPS Publication 46, Washington, D.C., January (1977)

3. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced encryption

standard. AES proposal: National Institute of Standards and Technology (NIST). In: W.K.

Chen (ed.), Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993,

pp. 123–135 (1998)

4. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM, 21(2):120–126 (1978)

5. Rabin, M.O.: Digitized signatures and public-key functions as intractible as actorization.

Technical Report LCS/TR-212, MIT Laboratory for Computer Science (1979)

6. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, July (1985)

7. Jyh-Haw Yeh. A Secure Homomorphic Encryption Algorithm over Integers for Data

Privacy Protection in Clouds. SmartCom (2016)

8. Zhao, F., Li, C., Chun, F.L.: A cloud computing security solution based on fully

homomorphic encryption. In: 16th international conference on advanced communication

technology IEEE (2014)

9. Yu, Y., Niua, L., Yang, G., Mu, Y., Susilo, W.: On the securit of auditing mechanisms for

secure cloud storage. Future Generation Computer Systems, vol. 30, pp. 127–132 (2014)

10. Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., Vasilakos, A.V.: Security and privacy

for storage and computation in cloud computing. Information Sciences, vol. 258, pp. 371–

386 (2014)

11. Lopez-Alt, A., Tromer, V., Vaikuntanathan, E.: On-the-Fly Multiparty Computation on the

Cloud via Multikey Fully Homomorphic Encryption. Proceedings of the forty-fourth annual

ACM symposium on Theory of computing, pp. 1219–1234 (2012)

12. Brakerski, Z., Vaikuntanathan, E.: Efficient fully homomorphic encryption from (standard)

LWE. SIAM Journal on Computing 43(2):831–871 (2011)

13. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.

In: Sigmod 2004, June 13-18 (2004)

14. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries

over outsourced data. The VLDB Journal pages, pp. 333–358 (2012)

117

SecuredDW: A Homomorphic Schema to Securely Hosting Data Warehouse in the Cloud

Research in Computing Science 148(4), 2019ISSN 1870-4069

15. Kathen, H., Amagasa, T., Kitagawa, H.: MV-OPES: Multivalued-order preserving

encryption schemes: A novel scheme for encrypting integer value to many different values.

IEIC Trans (2010)

16. Cruz-Lopes, C., Cesário-Times, V., Matwin, S., Rodrigues Ciferri, R., Dutra de Aguiar-

Ciferri, C.: Processing OLAP Queries over an Encrypted Data Warehouse Stored in the

Cloud. In: DaWaK 2014, LNCS 8646, pp. 195–207 (2014)

17. Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.: A Solution

to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems:

A Study on the Facebook Warehouse Cluster. In: HotStorage’13. San Jose, CA, June 27-28

(2013)

18. Bessami, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable and

secure storage in the cloud-of-clouds. In: Proceedings of the sixth conference on computer

systems. ACM, pp. 31–46 (2011)

19. Caclin, C., Haas, R., Vukolic, M.: Dependable storage in the intercloud. IBM rechearch, vol.

3783, pp. 1–6 (2010)

20. Alsolami, F., Chow, C.E.: N-cloud: improving performance and security in cloud storage.

In: high performance switching and routing (HPSR), IEEE (2013)

21. Xu, H., Bhalerao, D.: A Reliable and Secure Cloud Storage Schema Using Multiple Service

Providers. In: ICSE. DOI: 10.18293/SEKE2015-045 (2015)

22. Zhang, Q., Li, S., Liy, Z., Xingz, Y., Yang, Z., Dai, Y.: CHARM: A Cost-efficient Multi-

cloud Data Hosting Scheme with High Availability. IEEE Transactions on Cloud Computing

(2015)

23. Adi, S.: How to share a secret. Communication of the ACM, vol. 22 (1979)

24. Pundkar, S.N., Narendra-Shekokar, D.J.: Cloud Computing Security in Multi-clouds using

Shamir’s Secret Sharing Scheme. In: International Conference on Electrical, Electronics,

and Optimization Techniques (ICEEOT) (2016)

25. Chattopadhyay, A.K., Nag, A., Majumder, K.: Secure Data Outsourcing on Cloud Using

Secret Sharing Scheme. International Journal of Network Security 19(6):912–921 (2017)

26. Butoi, A., Tomai, N.: Secret sharing scheme for data confidentiality preserving in a public-

private hybrid cloud storage approach. In: 2014 IEEE/ACM 7th International Conference

on Utility and Cloud Computing (2014)

27. Hadavi, M.A., Jalili, R., Damiani, E., Cimato, S.: Security and searchability in secret

sharing-based data outsourcing. In: Int. J. Inf. Secur 14(6) (2015)

28. Varunya, A., Harbi, N., Darmont, J.: A novel multi secret sharing approach for secure data

warehousing and On-Line analysis processing in the cloud. In: IGI (2015)

29. Moghadam, S.S., Darmont, J., Gavin, G.: S4: A New Secure Scheme for Enforcing Privacy

in Cloud Data Warehouses. In: 7th International Conference on Information Systems and

Technologies (ICIST 2017). Dubai, United Arab Emirates, pp. 9–16 (2017)

30. Mahadewan, A.G., Kamesh, T.: Horns: A homomorphic encryption schema for cloud

computing using residue number system. In: IEEE 45th Annual Conference on Information

Sciences and Systems (2011)

31. Rivest, R.L., Dlemam, L.A., Dertouzos, M.L.: On data bank and privacy homeomorphisms.

Foundations of secure computation. Academia Press, pp. 169–177 (1978)

118

Kawthar Karkouda, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 148(4), 2019 ISSN 1870-4069

